Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider the formulation of a symbolic execution (SE) procedure for functional programs that interact with effectful, opaque libraries. Our procedure allows specifications of libraries and abstract data type (ADT) methods that are expressed inLinear Temporal Logic over Finite Traces(LTLf), interpreting them assymbolic finite automata(SFAs) to enable intelligent specification-guided path exploration in this setting. We apply our technique to facilitate the falsification of complex data structure safety properties in terms of effectful operations made by ADT methods on underlying opaque representation type(s). Specifications naturally characterize admissible traces of temporally-ordered events that ADT methods (and the library methods they depend upon) are allowed to perform. We show how to use these specifications to construct feasible symbolic input states for the corresponding methods, as well as how to encode safety properties in terms of this formalism. More importantly, we incorporate the notion ofsymbolic derivatives, a mechanism that allows the SE procedure to intelligently underapproximate the set of precondition states it needs to explore, based on the automata structures latent in the provided specifications and the safety property that is to be falsified. Intuitively, derivatives enable symbolic execution to exploit temporal constraints defined by trace-based specifications to quickly prune unproductive paths and discover feasible error states. Experimental results on a wide-range of challenging ADT implementations demonstrate the effectiveness of our approach.more » « lessFree, publicly-accessible full text available January 7, 2026
-
We propose a novel trace-guided approach to tackle the challenges of ambiguity and generalization in synthesis of recursive functional programs from input-output examples. Our approach augments the search space of programs with recursion traces consisting of recursive subcalls of the programs. Our method is based on a new version space algebra (VSA) for succinct representation and efficient manipulation of pairs of recursion traces and programs that are consistent with each other. We have implemented this approach in a tool called SyRup and evaluated it on benchmarks from prior work. Our evaluation demonstrates that SyRup not only requires fewer examples to achieve a certain success rate than existing synthesizers, but is also less sensitive to the quality of the examples.more » « less
-
Several modern programming systems, including GHC Haskell, Agda, Idris, and Hazel, supporttyped holes. Assigning static and, to varying degree, dynamic meaning to programs with holes allows program editors and other tools to offer meaningful feedback and assistance throughout editing, i.e. in alivemanner. Prior work, however, has considered only holes appearing in expressions and types. This paper considers, from type theoretic and logical first principles, the problem of typed pattern holes. We confront two main difficulties, (1) statically reasoning about exhaustiveness and irredundancy when patterns are not fully known, and (2) live evaluation of expressions containing both pattern and expression holes. In both cases, this requires reasoning conservatively about all possible hole fillings. We develop a typed lambda calculus, Peanut, where reasoning about exhaustiveness and redundancy is mapped to the problem of deriving first order entailments. We equip Peanut with an operational semantics in the style of Hazelnut Live that allows us to evaluate around holes in both expressions and patterns. We mechanize the metatheory of Peanut in Agda and formalize a procedure capable of deciding the necessary entailments. Finally, we scale up and implement these mechanisms within Hazel, a programming environment for a dialect of Elm that automatically inserts holes during editing to provide static and dynamic feedback to the programmer in a maximally live manner, i.e. for every possible editor state. Hazel is the first maximally live environment for a general-purpose functional language.more » « less
An official website of the United States government
